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1 Introduction

In this part, we consider bipartite graphs G containing neither a wheel nor a
parachute. These bipartite graphs are said to be WP-free. We prove that, if
G is a WP-free bipartite graph which is signable to be balanced and contains
a cycle with a unique chord, then G contains a strong 2-join. This shows that
if G is a WP-free balanced bipartite graph which is not strongly balanced,
then G contains a strong 2-join.

Strongly and totally balanced bipartite graphs were introduced in Part
I. We repeat the definitions here. A bipartite graph is strongly balanced if
every unquad cycle has at least two chords. Theorem 2.3(I) states that the
chords of every minimal unquad cycle belong to a 1-join. A bipartite graph
is totally balanced if it has no hole of length greater than 4. Theorem 2.9(I)
states that every totally balanced bipartite graph G has a bisimplicial edge,
namely an edge uv such that every node of N(u) is adjacent to every node
of N(v).

Remark 1.1 The class of WP-free balanced bipartite graphs properly con-
tains totally balanced bipartite graphs and strongly balanced bipartite graphs.

Proof: The cycle H of a wheel (H, v) and the cycle induced by the paths
T, Pi, P2 in a parachute Par(T, PI1, P2 , M) are holes of length strictly greater
than 4. Hence totally balanced bipartite graphs are WP-free.

In a wheel (H, v), two consecutive sectors, together with node v, induce a
cycle with a unique chord. In a parachute, assume w.l.o.g. that P1 has length
greater than 1. Then the graph obtained from the parachute by removing
the intermediate nodes of P1 is a cycle with a unique chord. Hence strongly
balanced bipartite graphs are WP-free.

To see that the inclusion is proper, note that a cycle C with a unique
chord is not strongly balanced, nor is it totally balanced when C has length
10 or more. Yet, when the two induced holes are quad, the cycle C is a
WP-free balanced bipartite graph. 0

In this part, we show that if a WP-free bipartite graph contains no 3-path
configuration and no odd wheel but contains a cycle with a unique chord, 'Acceio;-
then it has a strong 2-join, see Figure 1. NTrS ( J

Our proof of the decomposition theorem is organized as follows. In Section DrIC
2, we show that every edge which is the unique chord of a cycle belongs to uia
some biclique cutset. In Section 3, we show that G contains a strong 2-join.
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biclique

Figure 1: Strong 2-join

The strong 2-join decomposition generalizes the bisimplicial edge decom-
position for totally balanced bipartite graphs since, in this case, the subgraph
G1 of Figure 1 is reduced to an edge. Strong 2-joins are used to decompose
WP-free balanced bipartite graphs into strongly balanced bipartite blocks
which in turn can be decomposed into restricted balanced bipartite compo-
nents by 1-join decompositions, using Theorem 2.3(I).

As shown in Theorem 2.4(1), decomposition of a graph G by strong 2-join
preserves balancedness, i.e. G is balanced if and only if each of the blocks
in the decomposition is balanced. Furthermore it can be shown that G is
WP-free if and only if each of the blocks in the decomposition is WP-free.
Therefore an algorithm to find a strong 2-join decomposition of a graph can
be used to test whether a graph is a balanced WP-free bipartite graph.

2 Biclique Cutsets
Let G be a WP-free bipartite graph which is signable to be balanced. In this
section we show that, for every edge u which is the unique chord of at least
one cycle, the graph G has a biclique cutset KBD with u E B and v E D.

For a cycle C with unique chord ztv, we use the notation of Figure 2. It
will be convenient to write C = (CI, C2 ), where C, and C 2 are the two holes
induced by C and the chord try. We assume w.l.o.g. that u is in V r and that
v is in Vc.

Lemma 2.1 Every node x which is strongly adjacent to C is either of Type
1 [3.3(1)] and has two neighbors in C or" in C2 , or is a twin of u or v relative
to C.
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Figure 2: Cycle with a unique chord

Proof Every strongly adjacent node x is of Type 1, 2 or 3 of Theorem

3.3(I) and has at most two neighbors in C1 and in 02, since G contains no

wheel.

has exactly two other neighbors in C, one in C1 and one in C2, say x 1 and x2

respectively. If 1 is distinct from c (see Figure 2), then there is a parachute

with side paths P1 =u, v and P2 = Xi,.. ., c, v, top path T = u, a,..., x and

middle path M = x, x 2 ,... , d, v. So 1 = c. Similarly, it follows that x = d.

If x is of Type 3 [3.3(1)], assume w.l.o.g. that x is adjacent to b. Then x

has exactly two neighbors in 1.(C1) \ {u,v}, say x and x2. The nodes of

V(C 1 ) U {b, x} induce a parachute, a contradiction. 
0

Let V*(C) consist of nodes u, t, and the twins of nodes u and v relative

to C.

Lemma 2.2 The nodes of V'(C) induce a biclique.

Proof: Assume not. Then there exist twins u* of u and v* of v that are not

adjacent. This implies the existence of an odd wheel with center v and hole

induced by the nodes (V(C) \ { u, v} ) U { u, v"}. []

In the remainder we use te concept of direct connection, as defined

in Part I. A direct connection P = r,x2,. .. ,x,, from V(C,) \ {u,v} to

V(C 2 ) \ {u, v} avoiding V'(C) is said to be C-reducible if all its nodes in V 7

are adjacent to v, all its nodes in Ic are adjacent to u, node x 1 is adjacent

to both a and v or to both c and u, and node x,, is adjacent to both b and v

or to both d and u.

* 
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Lemma 2.3 Every direct connection from V(C1 ) \ {u,v} to V(C 2 ) \ {u,v}
avoiding V*(C) is C-reducible.

Proof: Let P = X1, X2, ... ,x, be a direct connection as defined above. By
Lemma 2.1, n > 2. We assume w.l.o.g. that Xi E Vr.

Claim Node x, is adjacent to both a and v.
Proof of Claim:

Case 1 Node x, is not strongly adjacent to C.
Let Xo E Vc be the unique neighbor of xi in V(C1 ) \ {u,v}.
Case 1.1 No node of P is adjacent to v.
Case 1.1.1 At least one node of P is adjacent to u.
If x0 y a, there is a 3PC(xo, u). If x0 = a, there is a wheel with center u.
Case 1.1.2 No node of P is adjacent to u, node x, is adjacent to d and to
no other node of V(C).
Then V(C) U V(P) induces a parachute with center v, side nodes d, u and
bottom node x0 .
Case 1.1.3 No node of P is adjacent to u and x,, is adjacent to at least one
node of C2 distinct from d.
If xo : a, there is a 3PC(xo, u). If x0 = a and node x,, is adjacent to b and
no other node of C, then there is an odd wheel with center u. Otherwise
V(C) U V(P) contains a parachute with center u and side nodes a, v.
So Case 1.1 cannot occur.
Case 1.2 At least one node of P is adjacent to v.
Let xj be the node of P adjacent to v which has the lowest index. Note that
j > 1, since x, is not a strongly adjacent node.
Case 1.2.1 No node cf P is adjacent to u and xj = xn.
Then x,, is a strongly adjacent node of Type 1[3.3(I)], having neighbors v
and z in C2. By replacing the vz-subpath of C2 not containing u by the path
v, x, z, we are back to Case 1.1.2 when n > 3. Otherwise, when n = 2, we
have a strongly adjacent node contradicting Lemma 2.1.
Case 1.2.2 No node of P is adjacent to u and xj -$ X,.
There is a wheel with center v or a parachute with center v, side nodes u, xj
and bottom node x0.
Case 1.2.3 At least one node of P is adjacent to u.
So let xi be the node of P with lowest index which is adjacent to u. If i <j,
then there is a 3PC(xo, u) or a wheel with center u depending on whether
x0 is adjacent to u or not. If i > j and some node Xk is adjacent to v for
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j < k < i, then there exists a wheel with center v. If no such node xk exists
there is a parachute with center v, side nodes u, j and bottom node x 0.
So Case 1.2 cannot occur.
Case 2 Node x, is strongly adjacent to C.
If x, is not adjacent to v, then a parachute exists: it is induced by V(CI)
and the xixj-subpath of P, where xj is the first node of P adjacent to u or
v. If no such node xj exists, the middle path of the parachute contains all
nodes of P and a subpath of C2.

So x, is adjacent to v and to another node y of C1. Let P" be a shortest
path from xl to u using nodes of V(P) U V(C2 ) \ {v}. Note that no interme-
diate node of P" is adjacent to z. else there is a wheel with center v. Now
y = a, otherwise the nodes of P" and C, induce a parachute with center v,
side nodes u, x, and bottom node y. This completes the proof of the claim.

To complete the proof of the lemma, we modify C1 and P as follows: let
C, = u, a, xi, v and redefine P by removing node x 1. Note that if the new
path P contains only one node, we are done by Lemma 2.1. Otherwise, by
repeating the above analysis with the new cycle C and the new p.th P, it
follows that x 2 is adjacent to u. By induction, the nodes of P in V r are
adjacent to v and those of V c are adjacent to u. 0

Lemma 2.4 In a C-reducible path P, the nodes in V c (VT resp.) are adja-
cent to all twins of u (v resp.).

Proof: Assume some node of P is not adjacent to a twin u* of node u.
Let C* be the cycle obtained from C by substituting u* for u and let Cj* and
C; be the two resulting holes. Then, since V*(C) = V*(C*), P is a direct
connection which is not C*-reducible, a contradiction to Lemma 2.3. 0

Lemma 2.5 Let P = x1,x2 , . .. ,xp and Q = Y1,Y2,. . .,Yq be C-reducible
paths such that xl is in V' and y, is in V . Then x, and yi are adjacent.

Proof: Assume that x, and y, are not adjacent. Then y, is not adjacent
to x3 , else there is a wheel with center u (or v). By induction, yi is not
adjacent to x2k+l, for 3 < 2k + I < p, else there is a wheel. Similarly, Y2 is
not adjacent to x2 , else there is a wheel. By induction, Y2 is not adjacent
to X2k, for 2 < 2k < p. It follows by induction that the paths P and Q are
node disjoint and that x, is not adjacent to yj for 1 < i < p and I < j < q.
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The nodes V(P) U V(Q) U (V(C) \ {u, v}) induce a hole. Therefore, there is
a wheel with center u (or v), a contradiction. 0

Given a cycle C = (C1, C2 ) with unique chord uv, we define a good biclique
KBD relative to (C1, C2) as follows. The node set B U D comprises V*(C)
and all the nodes x, such that there exists a C-reducible direct connection
P = X1 , X 2 ,. . . , x,. The fact that KBD so defined is a biclique follows from
Lemmas 2.2-2.5. Note that the above definition of a good biclique is not
symmetrical with respect to C, and C2, but once the pair (Ci, C2) has been
ordered, there is a unique good biclique.

Theorem 2.6 Let G be a WP-free bipartite graph that is signable to be bal-
anced. Let C be a cycle with unique chord uv and let C1 and C2 be the two
induced holes. Then the good biclique relative to (C1, C2) is a cutset of G
separating V(Cl) \ { u, v } from 11(C 2 ) \ { u, v }.

Proof: Define KBD to be the good biclique relative to (C1, C2). By Lemma
2.1, there is Iio node in V \ (B U D) which is adjacent to both V(C) \ {u, v}
and V(C 2) \ {u,v}. So every direct connection P from C, to C2 avoiding
B U D contains at least two nodes. By Lemma 2.3, P is C-reducible and, by
Lemma 2.5 and our choice of KBD, P contains at least one node in B U D,
a contradiction. 0

It follows from Theorem 2.6 and from the definition, that a good biclique
is a node minimal cutset separating 1"(C,)\ {, c} from V(C 2) \ {u, v}. Recall
from Part I that the blocks in the decomposition of G by a biclique cutset
KBD are the graphs induced by the nodes in B U D together with those in
the connected components of G \ B U D.

A property that follows from the definition of a good biclique and that
will be useful in the next section is stated below.

Remark 2.7 Let KBD be a good biclique relative to C = (C 1 , C2) and let G,
and G2 be the blocks containing C, and C2 respectively in the decomposition
by KBD. For every pair of nodes y, : in B U D, there is a path connecting y
to z with intermediate nodes in i'(GI) \ (BU D) as well as a path connecting
y to z with intermediate nodes iM '(G2) \ (B U D).



3 Strong 2-Joins

Let G be a WP-free bipartite graph which is signable to be balanced and
contains a cycle with a unique chord. In this section, we show that G has a
strong 2-join. First, we need a technical lemma.

Lemma 3.1 Among all cycles C = (C 1,C 2) with a unique chord, choose C
and the ordering (C1 , C2) so that the block G1 containing C1 in the decom-
position of G by the good biclique KBD relative to (C1 , C2) has the smallest
possible number of nodes. Let r E I'(GI) \ (B U D) and let y E B be adjacent
to r. Then there cannot exist a cycle H = (H1 , H2) with unique chord rx
(x 0 y) such that V(HI) \ {x} C V(G 1 ) \ (B U D) and y E V(H 2 ).

Proof: Assume such a cycle H exists, contradicting the theorem. By
Theorem 2.6, the good biclique KEF relative to (H 1 , H2) is a cutset separating
V(H) \ {x, r} from V(H 2) \ {x, r}. Assume w.l.o.g. that B, E are contained
in V r and that D, F are contained in Vc. Note that E U F is included in
V(G 1 ) since, by construction, every node of E U F is adjacent to a node of
V(Hi) \ {r,x}.

Let G" be the block containing H1 in the decomposition of G by KEF.

We will show that V(G') is included in V(G,). Since y E V(Gi) \ V(C*), the
inclusion will be strict, contradicting the minimality of block G1. Assume
V(G*) contains a node of V(G) \ V(G 1 ), say p. Then, there must be a
direct connection P between p and 1.'(HI) \ {x,r} avoiding E U F. Since
V(H,)\ {x,r} E V(G,)\ (BUD), the path P must contain at least one node
of B U D. Let z be such a node, which is closest to p in the path P.

If z E D \ F, then by using the fact that z is adjacent to y E B, it
follows that there is a direct connection between p and y avoiding E U F.
This implies that y E V(H 2) \ (E U F) belongs to V(G*), a contradiction.

If z E B \ E, then by Remark 2.7, there exists a path with intermediate
nodes in V(G) \ V(G 1 ) connecting z to y. Since E U F is included in V(GI),
this path together with the path P implies the existence of a path from p
to y avoiding E U F. Therefore, in both cases, the nodes of V(G) \ V(GI)
cannot belong to V(G*), completing the proof. 0

Theorem 3.2 Let G be a Jl'P-frcr bipartite graph that is signable to be bal-
anced. If G contains a cycle with a wnique chord, then G has a strong 2-join.
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Proof. Among all cycles C = (C1 , C2 ) with a unique chord, choose C and
the ordering (Ci, C2) so that the block G1 containing C1 in the decomposition
of G by the good biclique relative to (Cl, C2) has the smallest possible number
of nodes. Denote this good biclique cutset by KBD. Assume that the edges
incident with B U D in G, do not induce a 2-join. Then, there must be a
node w of G1 which is adjacent to x E B but not to y E B. By the definition
of a good biclique cutset, all the nodes of B are adjacent to node a in C1,
and therefore node w does not belong to 1/(C 1 ). Let Q be a shortest path
with nodes in V(G 1)\(BUD) connecting w to V(Ci)\(B UD). Such a path
exists since, otherwise, w would be in a different block in the decomposition
of G by KBD. Finally, let T be a path of V(G) \ V(Gi) connecting x to Y.
Such a path exists by Remark 2.7, see Figure 3.

Case 1 Some node of Q other than w is adjacent to x.
Let r be a node of Q which is adjacent to x. If r is not adjacent to y, then
we can replace w by r, remove the portion of Q from w to r and repeat
the argument with a shorter path Q. So, w.l.o.g., we can assume that the
nodes of Q which are adjacent to .r are also adjacent to y. Let r be the node
of Q adjacent to x which is closest to w. Denote by R the subpath of Q
connecting w to r. If y has two or more neighbors in R, in addition to r,
then there is a wheel. If y has one neighbor q in R, other than node r, then
there is a parachute induced by the nodes of R and T with center node r,
bottom node q and side nodes x and y. If y has no neighbor in R, other than
r, then there is a cycle (HI, H2 ) with a unique chord rr which satisfies the
hypothesis of Lemma 3.1, namely H, induced by V(R)U {x} and H2 induced
by V(T) U {r}. Now Lemma 3.1 contradicts our choice of G1 with smallest
number of nodes.
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Case 2 No node of Q other than w is adjacent to x.
Let R be the unique chordles, path connecting x to a using edges of Q and
of the ac-subpath of C1 in G,(V \ (B U D)). Denote by H the hole formed
by R together with edge ax. If y has two or more neighbors in H, other
than a, then there is a wheel. If y has one neighbor in H, other than a, then
V(H) U V(T) induces a parachute. If y has no neighbor in H, other than
a, then there is a cycle (H1 , H2 ) with unique chord xa which satisfies the
hypothesis of Lemma 3.1, namely H1 = H and H2 induced by V(T) U {a}.
But this contradicts the choice of G, with smallest number of nodes. 0
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